Roots & Polynomials Forwards & Backwards

Period Date

Show work NEATLY on a separate sheet of paper! 6

Use any method to find <u>all</u> roots of the polynomial, then graph the polynomial on the given axes.

NOTE: Several of these are factorable!!!

1. $x^3 + x^2 - 4x - 4$

3.
$$2x^3 - 5x^2 + x + 2$$

4.
$$-x^3 + 3x^2 + x - 3$$

5.
$$-4x^3 + 8x^2 + 15x - 9$$
 (Hint: There is a whole-number positive root)

6.
$$x^4 + 6x^3 + 2x^2 - 12x$$

8.
$$2x^3 - 5x^2 - 4x + 10$$

Show work NEATLY on a separate sheet of paper!

Write a polynomial in standard form that fits the given description.

9. The only roots are x = 3, -2, and 1 (x-3)(x+2)(x-1)

- 10. The only roots are x = 5 (multiplicity 1) and -4 (multiplicity 2) $(x-5)(x+4)^2$
- 11. The only roots are $x = 5, -3, \frac{1}{2}$, and $\frac{3}{4}$. The y-intercept is 90 90 = a(x-5)(x+3)(2x-1)(4x-3)90 = a(-5)(3)(-1)(-3)90 = -45a -2 = ay = -2(x-5)(x+3)(2x-1)(4x-3)
- 12. The graph is shown below: $-(x+2)^{2}(x-1)$
- **13.** The polynomial has roots x = -3, $4 + \sqrt{2}$, and $4 \sqrt{2}$ (What other root *must* it have?) (x+3) $(x^2+8x+14)$

$$X = 4 \pm \sqrt{2}$$

$$X - 4 = \pm \sqrt{2}$$

$$(X - 4)^{2} = 2$$

$$(X - 4)^{2} - 2 = 0$$

$$(X^{2} - 8x + 14) - 2 = 0$$

$$X^{2} - 8x + 14 = 0$$

14. The graph is shown below. (Note that the *y*-axis has a scale this time!)

15. The polynomial has roots $x = \sqrt{3}$, 0, 4, and $-\sqrt{3}$

$$X(x-4)(x^2-3)$$

$$X = \pm \sqrt{3}$$

$$X^{2} = 3$$

$$X^{2} - 3 = 0$$

16. The polynomial has roots

$$x = 1, 3 + \sqrt{6}, \text{ and } 3 - \sqrt{6}$$

The y-intercept is 12. $12 = a(x-1)(x^2-6x+3)$

12 = a(-1×3)

12 = - 3a

-4=a

$$x = 3 \pm \sqrt{6}$$

 $x - 3 = \sqrt{6}$
 $(x - 3)^2 = 6$
 $(x + 9) - 6 = 0$